Operaciones combinadas con fracciones

Realiza las siguientes operaciones combinadas con fracciones. Si es posible, simplifica el resultado.

  1. \(1-\dfrac{2}{3}+\dfrac{3}{8}-\dfrac{1}{4}\) =
  2. \(\dfrac{13}{2}-2+\dfrac{5}{6}-\dfrac{1}{2}\) =
  3. \(\dfrac{7}{2}-3+\dfrac{9}{4}-\dfrac{1}{6}\) =
  4. \(\dfrac{7}{6}+\dfrac{5}{2}-3+\dfrac{1}{5}\) =
  5. \(3+\dfrac{1}{4}-\dfrac{5}{6}+\dfrac{7}{12}-\dfrac{2}{3}\) =
  6. \(\dfrac{1}{5}+\dfrac{4}{5}-\dfrac{1}{4}+3+\dfrac{3}{4}\) =
  7. \(\dfrac{1}{2}\cdot\dfrac{3}{4}-\dfrac{1}{8}\) =
  8. \(\dfrac{3}{4}-\dfrac{1}{5}\cdot\dfrac{5}{2}\) =
  9. \(3+\dfrac{1}{4}:\dfrac{2}{3}\) =
  10. \(\dfrac{5}{3}\cdot\dfrac{40}{3}:\dfrac{10}{9}\) =
  11. \(1-\dfrac{8}{27}:\dfrac{16}{9}\) =
  12. \(\dfrac{5}{7}-\dfrac{2}{7}\cdot\dfrac{3}{4}\) =
  13. \(\dfrac{1}{2}+\dfrac{1}{3}:\dfrac{4}{5}-\dfrac{1}{8}\) =
  14. \(\dfrac{1}{2}+\dfrac{1}{3}\cdot\left(\dfrac{4}{5}-\dfrac{1}{8}\right)\) =
  15. \(\left(\dfrac{1}{2}+\dfrac{1}{3}\right)\cdot\dfrac{4}{5}-\dfrac{1}{8}\) =
  16. \(2-\left[\dfrac{1}{3}+\dfrac{3}{2}-\left(\dfrac{4}{5}+3\right)\right]\) =
  17. \(3-\left(\dfrac{1}{3}-\dfrac{4}{5}-\dfrac{3}{5}\right)-\left(\dfrac{2}{5}+1\right)\) =
  18. \(\dfrac{1}{3}\cdot\dfrac{7}{4}+\dfrac{2}{5}:\dfrac{3}{2}-\dfrac{11}{10}\) =
  19. \(\left(1-\dfrac{2}{3}\right):\left(2+\dfrac{1}{3}\right)-\dfrac{1}{5}\) =
  20. \(\dfrac{1}{5}-\left(\dfrac{1}{3}-\dfrac{81}{16}:\dfrac{8}{9}\right)\) =
  21. \(\left(\dfrac{2}{3}-2\right)\cdot\left(\dfrac{1}{2}+5\right)-\left(4+\dfrac{1}{3}\right):\left(2-\dfrac{1}{3}\right)\) =
  22. \(\dfrac{3}{5}\cdot\left(2-\dfrac{1}{3}\right)+\dfrac{1}{6}:\dfrac{1}{2}\) =
  23. \(-\dfrac{4}{3}\cdot\dfrac{1}{2}+\dfrac{3}{4}\left(\dfrac{1}{3}+\dfrac{1}{2}:\dfrac{2}{3}\right)\) =
  24. \(3-\dfrac{2}{3}\cdot\left(1-\dfrac{1}{4}\right)+\dfrac{3}{8}\cdot(-2)\) =
  25. \(5+\left(\dfrac{3}{4}-\dfrac{1}{2}\right):2\) =
  26. \(\dfrac{7}{4}+\dfrac{1}{3}\left(2-\dfrac{1}{5}\right)\) =
  27. \(\left(\dfrac{3}{4}+\dfrac{1}{8}\right)\cdot2-\dfrac{7}{8} \)=
  28. \(\dfrac{2}{5}+5-2:\left(\dfrac{2}{3}+6\right)\) =
  29. \(\dfrac{20}{3}:2-\left(2+\dfrac{1}{4}\cdot2\right)\) =
  30. \(\left(3+\dfrac{1}{5}\right)-\dfrac{2}{3}\cdot\left(\dfrac{3}{5}-\dfrac{1}{10}\right) \)=
  31. \(\left(\dfrac{2}{3}+\dfrac{1}{4}\right):\dfrac{1}{2}+\dfrac{1}{3}:\left(1-\dfrac{3}{4}\right) \)=
  32. \(\left(\dfrac{3}{4}+\dfrac{5}{2}\right):\dfrac{1}{2}+2\cdot\left(\dfrac{1}{2}-\dfrac{1}{4}\right)\) =
  33. \(3-\left(\dfrac{1}{2}+\dfrac{1}{4}:\dfrac{1}{4}\right)+2\cdot\left(\dfrac{3}{4}+\dfrac{1}{6}\right)\) =
  34. \(\left(\dfrac{2}{5}\cdot\dfrac{5}{3}+1\right)-\dfrac{1}{5}\cdot\left(2+\dfrac{1}{3}:\dfrac{1}{6}\right)\) =
  35. \(\dfrac{7}{4}-\left[\,2-\left(\dfrac{2}{3}+\dfrac{1}{2}\right)\right]\) =
  36. \(\left[\,3-2\cdot\left(1-\dfrac{1}{2}\right)\right]:\dfrac{1}{2} \)=
  37. \(\dfrac{3}{4}\cdot\left[\,\dfrac{7}{3}-\left(\dfrac{1}{2}+2\cdot\dfrac{1}{4}\right)\right]\) =
  38. \(\dfrac{8}{3}+\dfrac{1}{2}\left[\,2-\left(\dfrac{1}{3}+\dfrac{5}{6}\right)\right]\) =
  39. \(\left[\,3\cdot\left(1-\dfrac{1}{4}\right)-\dfrac{1}{6}\right]\cdot\dfrac{4}{5} \)=
  40. \(\dfrac{3}{4}\cdot\left[\,6\cdot\left(\dfrac{2}{3}+\dfrac{1}{6}\right)-3\right]\) =
Soluciones
1) \(\tfrac{11}{24}\)
2) \(\tfrac{29}{6}\)
3) \(\tfrac{31}{12}\)
4) \(\tfrac{13}{15}\)
5) \(\tfrac{7}{3}\)
6) \(\tfrac{9}{2}\)
7) \(\tfrac{1}{4}\)
8) \(\tfrac{1}{4}\)
9) \(\tfrac{27}{8}\)
10) \(-\tfrac{31}{3}\)
11) \(\tfrac{5}{6}\)
12) \(\tfrac{1}{2}\)
13) \(\tfrac{77}{120}\)
14) \(\tfrac{29}{40}\)
15) \(\tfrac{13}{20}\)
16) \(\tfrac{119}{30}\)
17) \(\tfrac{29}{15}\)
18) \(\tfrac{1}{12}\)
19) \(-\tfrac{2}{35}\)
20) \(\tfrac{131}{30}\)
21) \(\tfrac{149}{15}\)
22) \(\tfrac{4}{3}\)
23) \(-1\)
24) \(\tfrac{7}{4}\)
25) \(\tfrac{41}{8}\)
26) \(\tfrac{47}{20}\)
27) \(\tfrac{7}{8}\)
28) \(\tfrac{51}{10}\)
29) \(\tfrac{5}{6}\)
30) \(\tfrac{43}{15}\)
31) \(\tfrac{19}{6}\)
32) \(7\)
33) \(\tfrac{10}{3}\)
34) \(\tfrac{13}{15}\)
35) \(\tfrac{11}{12}\)
36) \(4\)
37) \(1\)
38) \(\tfrac{49}{15}\)
39) \(\tfrac{5}{3}\)
40) \(\tfrac{3}{8}\)